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ABSTRACT 

Given i.i.d. observations xltx2,x3,..., xn drawn from a mixture of normal terms one is 

often interested in determining the number of terms in the mixture and their defining 

parameters. Although the problem of determining the number of terms is intractable under 

the most general assumptions there is hope of elucidating the mixture structure given 

appropriate caveats on the underlying mixture. This paper examines a new approach to 

this problem based on the use of Akaike Information Criterion (AIC) based pruning of 

data driven mixture models which are obtained from resampled data sets. Results of the 

application of this procedure to artificially generated and real world data sets are provided. 



1. Introduction 

Given X =  {$lf $2» -X} where each h is d dimensional and i.i.d. according to an 

unknown density f0 (h one is often interested in estimating fQ (1) . This problem occurs 

in such areas as exploratory data analysis, classification, and regression. There are a vari- 

ety of approaches to the multivariate density estimation problem (Scott, 1992). 

An often used parametric approach is that of finite mixture models (Everitt and Hand, 

1981) in combination with the expectation maximization (EM) method of Dempster, 

Laird, and Rubin (1977). One difficulty with this tactic is that one needs some idea as to 

the appropriate number of terms in the mixture model as well as the approximate parame- 

ter values. Given this information the EM algorithm is guaranteed to converge to at least a 

local maxima in the likelihood surface. 

Some of the previous nonparametric approaches include histograms (Sturges, 1926), 

frequency polygons (Scott, 1985a), adaptive histograms (Wegman, 1970), average shifted 

histograms (Scott, 1985b), and kernel estimators (Silverman, 1986). These approaches are 

beneficial in that they possess nice asymptotic consistency properties, robustness with 

regard to nonnormality, and fewer parameters to estimate which implies better estimates in 

the finite sample regime. They are at a disadvantage as compared to the mixture model 

approach when it is suspected that the unknown true density is a mixture of a number of 

terms and one would like to estimate the posteriori probability of underlying term mem- 

bership for an unlabeled observation. 

This type of problem exists in the areas of medical diagnosis and image processing. In 

medical diagnosis the term membership may play an important role in identification of the 



underlying mechanism of disease or the identification of appropriate tissue type (Carmen 

and Merickel, 1990). In the general problem of image analysis the term membership may 

pertain to region type. 

A recently developed density estimation technique that circumvents some of the prob- 

lems of the above techniques is the adaptive mixtures procedure of Priebe and Marchette 

(1993). This procedure is a blend of the finite mixtures and kernel estimator approaches. It 

is essentially a mixtures type approach that allows for the creation of new terms in a data 

driven manner. We have successfully applied this technique in combination with fractal- 

based features to the detection of man-made objects in land (Solka, Priebe, and Rogers, 

1992) and aerial (Priebe, Solka, and Rogers, 1993) images, the general problem of texture 

classification (Solka, Priebe, and Rogers, 1993), and the measurement of breast parenchy- 

mal tissue density (Priebe et al., 1994). The adaptive mixtures estimator is asymptotically 

consistent like the kernel estimator, but it has the added benefit of creating additional 

terms at a rate which is considerably less then the rate n creation associated with the kernel 

estimator. 

One drawback to the adaptive mixtures estimator is that while there is asymptotic Lj 

convergence for the procedure, this convergence is achieved through the creation of an 

asymptotically infinite number of terms. Thus the procedure will result in an overly com- 

plex model given enough data. 

starting point to generate a mixture model with (potentially many) extra degrees of free- 

dom or parameters and to prune this model to a much smaller mixture model. This pruning 

r In this work we are interested in a model whose complexity more closely matches that 
D 

of the unknown distribution. The approach is to use the adaptive mixtures procedure as a       D 



of terms which is based on the use of the Akaike Information Criterion (AIC) is performed 

to obtain a model that not only matching the underlying distribution in a functional sense 

but also with regard to model complexity. Subsequent sections will detail how well that 

our pruning based procedure meets these goals. 

The AIC was originally developed as a tool to choose between two statistical estima- 

tors of differing complexities (Akaike, 1972). The AIC is written as a function of the like- 

lihood L and number of free parameters M in a model as follows 

AIC(f) = -2ln{L) +2M. 

In Akaike's original paper the AIC was applied to time series analysis, but subsequent 

work has applied the technique to ISODATA based (Carman and Merickel, 1990) and gen- 

eral clustering (Bozdogan and Sclove, 1984), and finite mixture analysis (Liang Jaszczak, 

and Coleman, 1992). 

We have developed a new approach to finite mixture determination which employs 

AIC based pruning of AMDE estimates. This approach differs from the work of Liang in 

two ways. Liang chooses to make an initial guess as to the appropriate complexity of the 

data's finite mixture model and then adjusts the number of terms in the model up and 

down by adding and removing a term until no further improvement is possible. Our 

approach begins with an over determined data driven model that is produced by the 

AMDE procedure and then uses AIC in combination with the expectation maximization 

technique to prune superfluous terms from the model. So whereas Liang's approach adds 

and subtracts terms to the model our approach just removes terms. The second difference 

is that where Liang's approach is to produce a single best solution to the finite mixtures 

question our approach produces a distribution of model complexities from which esti- 

mates of the appropriate model complexity can be made. 



Section 2 develops the methodology for term pruning in the case of finite mixtures 

models obtained from finite sample application of the adaptive mixtures procedure. Sec- 

tion 3 presents results indicating that we can improve upon an overdetermined mixture 

model and in some cases determine the true model complexity. Section 4 concludes with a 

discussion of the relevance of these results. 

2. Approach 

Our approach combines elements of nonparametric density estimation, parametric 

density estimation, and information based pruning. The nonparametric AMDE is used as 

the starting point of our procedure. We begin our discussions with an overview of AMDE. 

2.1 Adaptive mixtures density estimation 

Given an unknown distribution fQ (jc) we seek to model the distribution using /(.£) 

defined by 

8 

?(*;¥)  =  £ ft.AT(!;§,-) . (1) 
« = l 

where K is some fixed density parameterized by 0;-, and ¥ = f kv 9l5 ft2, 62, ...,ft , Qg ). 

The ft(.'s are referred to as the mixing proportions. (We can assume for much of what fol- 

lows that K is taken to be the normal distribution, in which case 0,- becomes { p.£, I,-} .) In 

the simplest case the mixture is assumed to have a single term and the parameters that 

need to be estimated are the mean and covariance of the distribution. 

The basic stochastic approach to parameter estimation is to recursively update the esti- 

mate ¥ of the true parameters ¥0 based on the latest estimate % and the newest data 



point X+i-Thatis, 

*l + i" =*, + <&,(*, +A) (2) 

for some update function <Dt. The specific form of the update equation that we use is the 

one suggested by Titterington (1984). If we let 1(40 be the Fisher information then the ver- 

sion of the recursive update formula we will use is 

*, + 1 = *,+ («/(^»^(^logtfA^A)) (3) 

where the derivatives represents the vector of partial derivative with respect to the terms 

of^. 

In the case of mixtures of multivariate normals we may write the recursive update 

equations as 

"(,)    =       n *     ^"tl,") (4) 

t=i 

ft(0    =ft(')+i(T(0
1-Ä(')) (5) 

a(')    =ftC0+Vu.[x      _M
(/)

 Und (6) 
nnn 

This is where z^l j is the estimated posteriori probability of i„ belonging to the ith term 



of the mixture, ftn'+ x is the estimated mixing coefficient, A„ +1 *s tne d dimensional esti- 
- (0 

mated mean, and l„ + \ is the dxd estimated covariance matrix of the ith term. 

The adaptive mixtures density estimation (AMDE) stochastic approximation approach 

is to recursively update VF, the estimate of the true parameters *¥Q, while at the same time 

providing the capability to expand the extent of the parameter space ¥ if dictated by the 

underlying complexity of the data. We note that in the AMDE case our parameter space 

4*is given by ¥ = f ftp §lt ft2, 92,... 1. The procedure 

*f + 1 =Vt + A-Ut& + l&l)+B-C,&+l-$t,t), (8) 

is used to recursively update the density where A = [l-Pt (xt + ll^)] , and 

B = Pt(xt+i ;^i) . Pt represents a possibly stochastic create decision and takes on values 

0 or 1. Ut updates the current parameters using equations (4-7) while Ct adds a new term 

to the model. As is implicit in the equation, the decision to add a new term is a function of 

the current data point, our current estimation of the parameters, and time. The time depen- 

dence is important in those cases that we wish to anneal the probability of creation as a 

function of training time. The models produced by the AMDE procedure are good func- 

tional estimates, but are typically overdetermined with regard to the number of terms. 

2.2 Approaches to AIC based pruning of AMDE generated mixture models 

Previous work in the literature has examined the application of the AIC to the determi- 

nation of the number of terms in a finite mixture (Liang, Jaszczak, and Coleman, 1992). 

The AlC/n estimates -2 times the expected value of the log likelihood of the estimated 

model (Akaike, 1972) 

^ = -2£[J/0log7]. (9) 

AIC is defined in terms of likelihood, L, and the number of free parameters in the model, 



M, as 

AIC(f)  =-2ln (L) + 2M = - lln [/"(*) ] +2M. (10) 

One uses the AIC to choose between models of differing complexities by selecting the 

model with the minimum AIC. This choice is equivalent to maximizing the mean likeli- 

hood of the model. 

Using this idea as a starting point we have developed a procedure that uses a single or 

set of adaptive mixtures density estimates and produces a pruned model with a lower com- 

plexity. This procedure uses AIC to evaluate the appropriateness of lower complexity 

models that have been subjected to the iterative EM method. In the iterative EM method 

the update equation takes the form 

% + i =*» + *(&* J. <n> 

where <£ is the update function and X is the set of observations. In the case of mixtures of 

multivariate normals we may write the iterative update equations as 

. «W (12) 
y 

JTft/^e) 
/ = i 

y 
y      ^ n 

y'=i 

S Vy 

(13) 

A(- = -^r—,and (14) 
nni 



S,.£WA,H»,-A/ (15) 
j = \ 

This is where T• is the estimated posteriori probability that Xj belongs to term i, ft- is the 

estimated mixing coefficient, p.- is the d dimensional estimated mean vector, and S(- is the 

dxd estimated covariance matrix for the ith term. 

The steps in our pruning procedure are as follows. 

Step 1 - Obtain fg an initial adaptive mixtures approximation to fo containing g terms. 

Step 2 - Compute the AIC of each of the g-1 term models after application of the EM 

method of equations (12-15) to each of the models. 

Step 3 - If AIC (fg-i) <AIC (fg) for one of the g-1 term models then the pruning 

process is repeated using this model. 

Step 4. Repeat this process of pruning and expectation maximization until no further 

improvement is possible. 

It is important to point out that at each pruning step the remaining terms ft-'s are updated 

based on their Mahalonobis distance to the pruned term prior to updating with the EM 

method. 

Figure 1 illustrates the pruning process. The log likelihood for the true model, the orig- 

inal ten term model, and the pruned and subsequently expectation maximized models are 

plotted. In this case the process was able to reduce a ten term model of the mixture.5N(- 

2,1) +.5N(2,1) to the appropriate two term model. This case will be discussed in Section 3. 

[FIGURE 1 SHOULD GO ABOUT HERE] 



3. Results 

This pruning procedure was tested on data sets drawn from two different bimodal two 

term distributions, one four mode four term distribution, a standard unimodal normal dis- 

tribution, and the Buffalo snowfall data (Parzen, 1979), see Figure 2. In each simulated 

data case 10,000 points were drawn from each distribution. The snowfall data consisted of 

63 points. 

Twenty-five bootstrap resamples were extracted from each of the data sets using their 

empirical distributions (Efron and Tibshirani, 1993). These resamples are used in a way 

that is slightly different from the standard procedure. In standard bootstrapping one uses 

the resamples to estimate the standard error of a statistic whose standard error is not avail- 

able in closed form. Our goal in bootstrapping is the production of a distribution on the 

number of terms in the models after AIC based pruning. This distribution can then be used 

to estimate the number of terms in the true model. 

An up to ten term adaptive mixtures model was created for each of the resampled data 

sets. Each of these models were then subjected to the AIC based pruning process. This 

process provides a model complexity distribution based on the data set. 

[FIGURE 2 SHOULD GO ABOUT HERE] 

In Figures 3a and 3b we present adaptive mixtures solutions for two of the resamplings 

of the data set drawn form a(x)=.5*N(-2,l)+.5*N(2,l). We have included dF space plots 

along with the standard functional representation of the distributions. dF space plots are an 

effective way to display the terms in a mixture. Each term TCjNCm.ai2) is plotted as a circle 

whose radius is proportional to n-x and whose center is given by Oi^C;2). Where it is hard to 

10 



discern the distributional structure from a standard function plot it is quite easy in a dF 

space plot. We notice that the terms in each of the two solutions are markedly different. 

This phenomena falls under the adage that there is "more then one way to skin a cat" when 

producing a functional estimate. We also notice that there are more then the "theoretical" 

number of terms needed. Each of the models is made up of ten terms. The occurrence of a 

matching number of terms in each model is the result of our initial constraint on the model 

complexity. It is important to note that though the terms are different in each solution the 

location and number of modes is not and that there are terms that are superfluous to the 

minimal representation of the distribution. 

[FIGURE 3 SHOULD GO ABOUT HERE.] 

Table 1 illustrates the results of the pruning process. For each of the five distributions 

we have listed the number of terms in the final pruned models for each of the twenty-five 

resamples. In case a the procedure converged to the correct solution 11 of 25 times, 7 of 25 

times in case b, 17 of 25 times in case c, and 3 of 25 times in case d. The procedure con- 

verged to a 3 term solution 4 of the 25 times in the case of the snowfall data. The appropri- 

ate solution for the case of the snowfall data will be the subject of later discussions. 

[TABLE 1 SHOULD GO ABOUT HERE.] 

We may estimate the model complexity through the use of statistical measures on this 

distribution. For example one could choose the minimal order statistic as the measure of 

the number of terms in the minimal complexity mixture model that characterizes the data. 

This choice has the advantage that it represents the lowest complexity model obtainable 

from the procedure. Alternatively one could use the expected value of the distribution. 

This choice indicates the average complexity of the mixture models that represent the data 

set. 

11 



Table 2 presents the average Lj error between the true mixture model and the pruned 

model for each of the first 4 cases for each of the obtained model complexities. No Lj 

results were provide for the snowfall data since the true underlying model is unknown. It 

is encouraging to note that in each case the minimum average error occurs at the appropri- 

ate level of model complexity. 

[TABLE 2 SHOULD GO ABOUT HERE.] 

The number of modes in the snowfall data has been the topic of continued debate 

throughout the history of density estimation. Arguments have been made in favor of tri- 

modal (Scott, 1992) and unimodal structure (Scott 1994). In Figure 4a we compare the 

output of the pruning process for one of the 3 term models to a standard kernel estimator 

with a bandwidth of 6. The bandwidth of 6 was chosen as an appropriate setting to illus- 

trate the trimodaliry of the data (Silverman, 1986). The 3 term model has been expectation 

maximized against the original data in order to make a fair comparison between the two. 

We note that the two models are very similar in character and specifically with regard to 

the mode placement. In fact if we drop the bandwidth down to 4 we can obtain a solution 

that is even closer in character to our mixture model, see Figure 4b. 

[FIGURE 4 SHOULD GO ABOUT HERE] 

The last thing left to be discussed is the output of the pruning procedure. In Figures 5 

a, b, c and 6 a and b we present an expectation maximized adaptive mixture solution along 

with the output of pruning this solution. We notice that the number of terms in the solution 

has been reduced from ten to the appropriate number in each case. We also notice that the 

terms left from the process are in approximately the correct location and have about the 

right mixing coefficients and variances. 

[FIGURES 5 AND 6 HERE] 

12 



4. Conclusions 

The AMDE procedure provides a data driven method for obtaining a good mixture 

model density estimate. The convergence properties of the procedure tend to guarantee 

that the model will be of higher complexity than the true density if the later is a finite mix- 

ture. The exceptions to this occur when the sample size is small enough that too few terms 

are created by the AMDE. The AMDE thus provides a useful mixture model estimate of 

an unknown density. 

The AIC provides a convenient tool for evaluating appropriate model complexity. 

It serves as a good "rule of thumb" in choosing between models. Under appropriate condi- 

tions it has the capability to help reveal the underlying mixture which generates as data 

set. 

In many cases we have reason to believe that the unknown density is a mixture model 

but of unknown complexity. Then we are often interested in the structure of the underlying 

mixture model. It is in this case that AIC based pruning can be used to find not only an 

"optimal" model but also a distribution of pruned models which provides some knowledge 

about the true density. 

In this paper we have presented a new technique to help determine the unknown struc- 

ture of a mixture model. This technique uses a set of adaptive mixtures solutions that have 

been subject to AIC based pruning to help determine the minimum complexity mixture 

model that best characterizes the data. The goal of this technique is the production of a 

more parsimonious mixture model of an unknown distribution. 

13 



This approach embodies the spirit in which the AIC should be used in that one is com- 

paring two maximum likelihood solutions. There is a penalty with regard to computational 

complexity that occurs in the production of expectation maximized models at each step of 

the pruning process. However the pruning procedure is highly parallel in nature and we 

would expect substantial speedups on a MIMD machine. 

Future work will focus on extending this technique to multivariate distributions, on a 

more in-depth analysis of the theoretical underpinnings of the approach, and on parallel- 

ization of the procedure. We also plan to pursue better term creation techniques within the 

AMDE framework. Finally we hope to produce an AMDE like estimator that uses term 

creations and annihilations. 
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Table 1: 

Case/# Terms 1 2 3 4 5 6 7 

a - Separated Bimodal 11 4 6 2 2 

b - Bimodal 7 3 6 3 5 1 

c - Quadmodal 17 5 3 

d - Standard Normal 3 9 4 4 5 

e - Buffalo Snowfall 4 10 7 4 

Table 2: 

Case/# Terms 1 2 3 4 5 6 7 

a - Separated Bimodal .017 .025 .023 .025 .043 

b - Bimodal .021 .028 .033 .030 .032 .017 

c - Quadmodal .042 .046 .063 

d - Standard Normal .011 .024 .024 .020 .018 

e - Buffalo Snowfall 
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FIGURE AND TABLE CAPTIONS 

Figure 1 - Pruning curves for the reduction of a 10 term model to a 2 term model. 

Figure 2 Test Cases 

(a) - a(x)=.5*N(-2,l)+.5*N(2,l), 

(b) - a(x) =.5*N(-1.25,1)+.5*N(1.25,1), 

(c) - a(x) =.25*N(-6,1)+.25*N(-2,1)+.25*N(2,1)+.25*N(6,1), 

(d)- a(x) = N(0,l), 

(e) - The Buffalo Snowfall Data 

Figures 3 a and b - Adaptive mixtures estimates for two of the resamplings of the data set 

drawn from case a. 

Figures 4 a, b - Comparison of the pruned 3 term model which has been expectation max- 

imized against kernel estimates of the original Buffalo snowfall data with bandwidths of 6. 

and 4. 

Figures 5 a, b, and c - Expectation maximized adaptive mixtures estimates along with the 

output of the pruning process for the first three cases. 

Figures 6 a and b - Expectation maximized adaptive mixtures estimates along with the 

output of the pruning process for the last two cases. 

Table 1: Number of terms for each case. 

Table 2: Average Lj error for each test case for each model complexity. 
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